
Antipercolation on Bethe and triangular lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 801

(http://iopscience.iop.org/0305-4470/16/4/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 16 (1983) 801-810. Printed in Great Britain 
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les Nancy Cedex, France 
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Abstract. Antipercolation is related to percolation somewhat as antiferromagnets are to 
ferromagnets. 

The antipercolation problem is solved on the Bethe lattice. The critical exponents 
are identical to the percolation exponents when the coordination number z is greater than 
a critical value z, = 3, for which the problem has new exponents satisfying extended 
universality and below which there is no transition. For alternate lattices the problem 
may be transformed into a percolation problem with different occupation probabilities on 
the two sublattices. This allows a connection with an s-state Potts model with different 
z-spin interactions on the two sublattices. 

In two dimensions there is no transition on the alternate square and honeycomb 
lattices whereas a transition exists on the triangular lattice. Using the phenomenological 
renomalisation group method, the critical concentration is found to be p:' = 0.21 whereas 
the correlation length exponent v, seems to converge towards the accepted percolation 
value v P =  1.333. 

1. Introduction 

In the site percolation problem each site on a lattice is either black or white with 
independent probabilities p and q = 1 - p .  The quantities of interest are the critical 
probability p?' for which an infinite cluster first appears, the mean number of clusters 
per site F'"' ( p ) ,  the percolation probability P'"'(p) and the mean square finite cluster 
size S'"'(p)  (Shante and Kirkpatrick 1971, Essam 1972, 1980, Stauffer 1979). 

In this work we present some results concerning the antipercolation (AP) problem. 
Its relation to the percolation problem is similar to that between antiferromagnetism 
and ferromagnetism. In the AP problem, two neighbouring sites are directly connected 
and belong to the same bond cluster when they have different colours so that AP bond 
clusters contain alternating black and white sites (see figure l(a)). A site surrounded 
by z first neighbours of the same colour ( z  is the coordination number) builds up a 
one-site cluster. The problem is symmetrical under an interchange of the colours 
( p  -4) so that when an infinite cluster appears at the lower critical probability pP' si 
the AP probability P'"'(p) is non-zero until p reaches the upper critical probability 
4:' = 1-p P'. The functions F'"'(p) ,  P'"'(p) and S'"'(p) retain the same meaning as 
above. They are symmetrical about p = f: 

X'"'(p)  = X'"'(q) ( X  = F, P, S ) .  (1.1) 

t Permanent address: J Stefan Institute, University E Kardelj, Ljubljana, Yugoslavia. 
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Figure 1. ( a )  Antipercolation on an alternate lattice: clusters (bold lines) are built up of 
neighbouring sites with different colours. ( b )  When the colour of the sites belonging to 
sublattice (A) (broken lines) is changed, then either a black or a white percolation cluster 
corresponds to each antipercolation cluster on the initial lattice. 

The AP model may describe either the behaviour at zero temperature and zero 
field of a hypothetical magnetic alloy APB1-, in which the exchange interactions 
JAA = JBB = 0 whereas J A B  # 0 or gelation in a solution with two types A and B of 
molecules where only A-B bonds are possible. 

2. Antipercolation on the Bethe lattice 

The AP problem is easily solved on the Bethe lattice using the ghost field and branch 
function method (Marland and Stinchcombe 1977, Reynolds et a1 1977, Stinchcombe 
1974, Turban 1979). Details are given in the appendix. The critical probability is 
given by: 

pf"' = f- ($- - 1 ) 2 ) 1 / 2  (2.1) 
so that a transition to the antipercolating phase occurs only when the coordination 
number z exceeds a critical value zc = 3 for which pi."' = q r '  = ' 2. The critical probability 
pi."' may be rewritten as a function of the site percolation threshold sincep?' = l / ( z  - 1) 
on the Bethe lattice: 

(2.2) 
giving a better approximation for alternate lattices in lower dimensionalities on which 
there is no transition when p?' >f (see § 3). 

pp' -1 1 'PI2 1 / 2  
- 2 - ( 4 - P c  1 

Near the threshold the AP probability is given by 

2 2 ( z - 1 ) ( 1 - 2 p 3  
P'"'(p)  = E + O(E2) (2 > 3) 

z -2  (2.3) 

P'"'( p )  = 0 (all p ,  z = 3) (2.4) 
where E = p  -pfa'. The mean square cluster size is 

z(z  +1) 
(Z - 1)4(1 - 2 p p )  S ' " ' ( p )  = E - l +  O(1) (z >3)  (2.5) 

S'"' (p)  = ?E -2 + O( 1) ( 2  = 3 )  (2.6) 
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and at the AP threshold 

where h is the ghost field (see the appendix). 
It follows that when z > zc, the critical exponents 

P a =  1 Ya’1 s a = 2  

are identical to the percolation exponents. 
When z = zc, we find 

y: = 2  8;  = 2  

p ;  = 2  

and, using the Griffiths scaling law y = p ( S  - l ) ,  
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(2.7) 

(2.9) 

(2.10) 

in agreement with the extended universality (Suzuki 1974). The change of exponents 
when p p ’  = 5 is linked to the ( p ,  q )  symmetry of the problem (see § 3 and Burchard 
1972). 

3. Alternate lattices and the Potts model 

When the lattice is built up of two interpenetrating identical sublattices (A) and (B) 
(figure l), by changing the colours on one of the sublattices, say (A), we recover a 
site percolation problem, since to any alternate cluster on the starting lattice (figure 
l(a)) there corresponds either a white or a black percolation cluster on the transformed 
lattice (figure l (b)) .  If p is the black site occupation probability p(b) and q the white 
site occupation probability p (w) on the starting lattice, then on the transformed lattice 
the probabilities remain unchanged on the (B) sublattice whereas p(b) = q and p(w) = p 
on the (A) sublattice. The concentrations of black and white sites are the same on 
the transformed lattice; 

(3.1) 1 c(b) =c(w) = z ( p  + q )  = S .  
It follows that black and white clusters have the same properties. 

When p = i we recover the usual site percolation problem and 

where P ‘ ” ’ ( p )  is the probability for any site to be black and to belong to the infinite 
black cluster (the factor of two is due to the possibility of black or white infinite clusters 
on the transformed lattice). Alternate lattices with E“”’(+) = 0 do not present any AP 
transition. In two dimensions this occurs for the honeycomb and square lattices. The 
triangular lattice for which pip’ = ; is not alternate and the argument given above no 
longer holds, but it does present a transition as will be shown in the following section. 
In three dimensions the simple cubic and diamond lattices have an AP transition and 
other lattices with higher coordinate numbers are expected to have one as well. 

To get the AP critical exponents on alternate lattices one may use the connection 
mentioned above between AP and site percolation and study the statistics of black 



804 F SevSek, J -M Debierre a n d  L Turban 

clusters on the transformed lattice since black and white clusters have the same 
properties. The site percolation problem on a lattice G with coordination number z 
has been shown to be related to the s = 1 limit of an s-state Potts model with z-spin 
interactions on the covering lattice G, (Giri et a1 1977, Kunz and Wu 1978). On the 
transformed lattice we have a percolation problem with black site probability q on 
the (A) sublattice and p on the (B) sublattice. It follows that the corresponding Potts 
model has different coupling constants K1 and K 2  (K = J / k B T )  on the two sublattices 
with (see figure 2) 

q = 1 - exp(-K1) 

p = 1 - exp(-Kz). 

(3.4) 

(3.5) 

(01 ( b l  

Figure 2. ( a )  The square lattice G is divided into two square sublattices (with white or 
black sites). (6) On the covering lattice G, we have four-spin interactions K1 (white stars) 
or Kz (black stars) for the corresponding Potts model. 

The physical line in the ( K I ,  K 2 )  plane is such that 

exp(-K1) + exp(-K2) = 1. (3.6) 
Let f(K1,, KZc)  = 0 be the critical line of the Potts model in the s = 1 limit; the physical 
and critical lines are both symmetrical in the K1 and K2 variables and may have, 
depending on the lattice, either no intersection (i.e. no AP transition) (figure 3 ( a ) ) ,  

la1 lbl (0 
Figure 3. In the (Kl, K2) plane, the critical line (full curve) limits the percolating phase 
(hatched area). The physical line (broken line) may have ( a )  no intersection with the 
critical line, (6) one intersection corresponding to p r )  = $, (c) two symmetrical intersections 
corresponding to the lower and upper critical probabilities for antipercolation. 
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one intersection on the line K1 = K2 corresponding to p? = 3 (figure 3 ( 6 ) )  or two 
symmetrical intersections p? and 4:) (figure 3 ( c ) ) .  

In the last case, if the perturbation K = i(K1 - K2) on the site percolation problem 
is irrelevant, the critical behaviour will be governed by the percolation fixed point, 
whereas when the two critical points coalesce at p t )  = $ (figure 3 ( b ) )  the critical point 
is approached tangentially along the physical line and the temperature-like scaling 
field is of the second order in ( p  - p ? ) ) ,  leading to extended universality. 

4. Antipercolation on the triangular lattice-phenomenological renormalisation 
group approach 

As well as a transition for the site percolation problem with p?) = f, the triangular 
lattice also shows an AP transition. Namely, all the boundary sites of a site percolation 
cluster belong to the same AP cluster. When p = p:' the size of a percolation cluster 
diverges, which is also true for its boundary. Thus an infinite AP cluster exists at p = f. 
However, as may be verified from the computer simulations shown in figure 4, the 
AP transition on the triangular lattice occurs at a much lower concentration. 

Figure 4. Computer simulation of the antipercolation problem on the triangular lattice 
with p = 0.08 (a) ,  p = 0.21 ( b )  and p = 0.50 ( c ) .  t, occupied site. 

The critical concentration p?) and the correlation length exponent v a  for the AP 
problem on the triangular lattice have been obtained using the phenomenological 
renormalisation group approach (Nightingale 1977, 1979, Sneddon 1978, Nightingale 
and Blote 1980, Derrida and Vannimenus 1980, Derrida and de Seze 1982). 

The two-dimensional lattice is replaced by an infinite strip, n sites wide, and 
periodic boundary conditions are used. The strip correlation length is calculated 
using the transfer matrix technique. All distinct configurations making use of the 
circular permutation symmetry of a column of n sites are retained. For instance, a 



806 

q 3  0 3 p q 2  3 p 2 q  0 p 3  
0 q 3  3 p q 2  3 p 2 q  p 3  0 
0 q 3  3 p q 2  3 p 2 q  0 0 
0 q 3  3 p q 2  3 p 2 q  0 0 

T3 = 

F Sevtek, J-M Debierre and L Turban 

* 

1 2  N N+l  

o - - - o + - - .  0 -  

C l  (2 c 3  C L  ( 5  c t  

Figure 5. Lattice strip used in the transfer matrix calculation. With n = 3 and periodic 
boundary conditions we get six distinct configurations (C, to C,) when the permutation 
symmetry is used. Black or white sites with a line are connected to the origin. 

column of three sites with periodic boundary conditions gives the six possible configur- 
ations shown in figure 5 .  The configurations which are not connected to the first 
column are deleted since we want to get the correlation function r ( N )  i.e. the 
probability of having any site on column N connected to the first column. The transfer 
matrix elements Tii are then determined as the probabilities of getting the configuration 
Ci on the (M + 1)th column given the configuration Ci on the Mth column (Derrida 
and Vannimenud 1980, Derrida and de Seze 1982), and with n = 3 we get the transfer 
matrix 

0 0 3 p q 2  3 p 2 q  0 p 3  
0 0 3 p q 2  

(4.1) 

The largest eigenvalue A,, max of the transfer matrix is related to the correlation 
length C,, since 

r , ~ )  - A  r m a x  - exp(-N/t,) 

5, = - l/W n max) .  

(4.2) 
so that 

(4.3) 
The phenomenological renormalisation group equation relates the occupation proba- 
bility p ’  on a strip of width n to its value p on a strip of width m > n : 

C , ( p ’ ) / n  = C , ( p ) / m .  (4.4) 
The critical concentration p?)  is a fixed point of this equation for both n and m 
tending to infinity: 

t n ( p ? ’ ) / n  = S m ( p ? ) ) / m  n,m+co. (4.5) 
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Table 1. Approximate critical concentrations pp’(n, m )  and correlation length exponents 
v , (n ,  m )  for the antipercolation problem on the triangular lattice. S, gives the size of the 
transfer matrix for the strip of width m. The corresponding site percolation results of 
Derrida and de Seze (1982) are given for comparison. 

1-2 2 0.141 83 0.8494 0.733 89 1.5604 
2-3 6 0.149 68 1.4717 0.582 14 1.4932 
3-4 16 0.210 90 1.4167 0.590 96 1.4718 
4-5 38 0.209 18 1.4168 0.588 70 1.4139 
5 -6 105 0.212 07 1.3808 0.589 92 1.3880 

Since our calculations are limited to narrow strips by the computer time available, 
the critical concentrations pp’(n,  m )  obtained are subject to finite size errors. These 
can be minimised by taking m = n + 1 (Derrida and de Seze 1982). As seen from 
table 1 the resulting values for the AP threshold do not show a monotonic convergence, 
but already a value p?’ = 0.21 may be estimated from the strips of width up to n = 6 .  

The correlation length exponent va may be deduced from the relation (Derrida 
and de Seze 1982) 

and is also given in table 1. Larger sizes would be needed to extrapolate to infinite 
width but, in any case, the calculated values indicate that the critical exponent va 
decreases with increasing strip width towards its percolation value v p  = 1.333 (Den 
Nijs 1979). These values for narrow strips show the same evolution with strip width 
as those of Derrida and de Seze (1982) for the site percolation problem with the same 
boundary conditions (table 1). This suggests that both problems belong to the same 
universality class. 

Appendix. Ghost field and branch function method on the Bethe lattice 

On a lattice with N sites which are black (white) with probability p (1 - p ) ,  let N,, be 
the number of bond clusters of n sites, two neighbouring sites being directly connected 
when their colours are different. The probability P , ( p )  for a given site to belong to 
an n-site cluster is 

The AP probability P ‘ ” ’ ( p )  is given by 

P ‘ ” ’ ( p )  = 1-1’ Pn ( p )  
n 

where the prime on the sum indicates the exclusion of the infinite cluster. Equation 
(A2) simply states that any site belongs either to the infinite cluster with probability 
P‘”’ (p )  or to any one of the finite clusters. 
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The mean square cluster size S'"' ( p )  is given by 

Let us now introduce a ghost site which is connected to each of the lattice sites with 
probability h. Then 

9, ( p ,  h 1 = 9 n  ( P  ) ( I -  h )" (-44) 

since a cluster remains an n-site cluster only when all its sites are disconnected from 
the ghost site and this occurs with probability (1 - h)".  Then 

P ' " ' ( p , h ) =  l - C ' 9 , ( p , h )  
n 

and S'"'(p)  may be rewritten as 

(A6) 
ah h=O 

In the AP problem P'"'(p) is the order parameter, S'"' (p)  the susceptibility and 

Let Rl(p, h )  (R2(p, h ) )  be the probability that a branch, on the Bethe lattice with 
h, which allows us to count the black and white sites, is similar to a staggered field. 

coordination number z ,  starting on a black (white) site is finite; clearly 

Near the AP threshold, we may write 

R1'2'(P) = 1-77 1'2)  

r/1-(Z-l)(l-p:))?J2=0 

p?'(z -1 )71-q*=0  

p y  = $(+ - 1)2)1/2 &' = 1 -pp'. 

and up to terms of the first order in ql ,  q2 and E = p  -p? )  

so that 

Keeping terms of second order leads to 

2 ( 1 -  2 p 3 e  
( z  - 2 ) p 3 1  -p? ' ) [ l  + ( z  - l)p?'] 

+O(E2) 771 = 

7 2  = pry2  - 1)r/1+ O(2)  

so that when z > 3 

2z(z -1)(1-2p?') 
P'"'( p )  = E +O(E2) 

z - 2  

whereas when z = 3 ,  p r '  = t and P'"' (p)  = 0 for all p .  
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Using equations (A6), (A7), (A8) and (A9) we get 

(1 -p )R; - '  + p ( l  - p ) ( z  - 1)R;-'R;-2 
1 - p ( l  - p ) ( z  - 1)z(R1R2)'-2 

1 + (32 - 1)[ 1 / ( z  - - E (1 - 2~:') - E 2] 
s'a'(p) = 

E (1 - 2 p 3 z  - 1 ) 2 +  & 2(z  - 

so that when z > 3 

&-'+0(1) z(z + 1) 
( Z  - 114(1 - 2 p 9  

S'"'(p)  = 

and when z = 3 

s'a'(p)=:E-2+o(1). 

R 1 ( 2 ) ( P : ) , h ) =  l--PlIZ) 

At the critical probability we may write 

and using equations (A7), (A8) and (A91 we get 
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